Blocks, Procs & Lambdas
Blocks, procs, and lambdas are essential features in Ruby that allow you to pass executable code around. T-Ruby provides a powerful type system for these constructs, ensuring type safety while preserving Ruby's flexibility.
Understanding the Differences
Before diving into typing, let's clarify the three concepts:
- Block: Anonymous code passed to a method (not an object)
- Proc: A block wrapped in an object
- Lambda: A stricter form of Proc with different argument handling
# Block - passed with do...end or {...}
[1, 2, 3].each do |n|
puts n
end
# Proc - created with Proc.new
my_proc: Proc<Integer, void> = Proc.new { |n| puts n }
my_proc.call(5)
# Lambda - created with ->
my_lambda: Proc<Integer, void> = ->(n: Integer) { puts n }
my_lambda.call(10)
Typing Blocks
Methods that accept blocks use the &block parameter. Type it with Proc:
def each_number(&block: Proc<Integer, void>): void
[1, 2, 3].each do |n|
block.call(n)
end
end
def transform_strings(&block: Proc<String, String>): Array<String>
["hello", "world"].map do |str|
block.call(str)
end
end
# Using the methods
each_number { |n| puts n * 2 }
result = transform_strings { |s| s.upcase }
# result: ["HELLO", "WORLD"]
The Proc<Input, Output> syntax specifies:
- First type: The block parameter type
- Second type: The block's return type
Multiple Block Parameters
Blocks can take multiple parameters:
def each_pair(&block: Proc<[String, Integer], void>): void
pairs = [["Alice", 30], ["Bob", 25], ["Charlie", 35]]
pairs.each do |name, age|
block.call(name, age)
end
end
def transform_hash(&block: Proc<[String, Integer], String>): Array<String>
{ "a" => 1, "b" => 2, "c" => 3 }.map do |key, value|
block.call(key, value)
end
end
# Using multiple parameters
each_pair do |name, age|
puts "#{name} is #{age} years old"
end
results = transform_hash { |k, v| "#{k}=#{v}" }
# results: ["a=1", "b=2", "c=3"]
Use tuple syntax [Type1, Type2] for multiple block parameters.
Optional Blocks
Some methods can work with or without a block:
def process_items(items: Array<Integer>, &block: Proc<Integer, Integer>?): Array<Integer>
if block
items.map { |item| block.call(item) }
else
items # Return items unchanged
end
end
# With a block
doubled = process_items([1, 2, 3]) { |n| n * 2 }
# doubled: [2, 4, 6]
# Without a block
unchanged = process_items([1, 2, 3])
# unchanged: [1, 2, 3]
The ? makes the block optional (nilable).
Proc Types
Procs are first-class objects that can be stored and passed around:
# Define proc types
adder: Proc<Integer, Integer> = Proc.new { |n| n + 10 }
greeter: Proc<String, String> = Proc.new { |name| "Hello, #{name}!" }
validator: Proc<String, Boolean> = Proc.new { |email| email.include?("@") }
# Using procs
result1 = adder.call(5) # 15
result2 = greeter.call("Alice") # "Hello, Alice!"
result3 = validator.call("test@example.com") # true
# Procs can be passed to methods
def apply_to_all(numbers: Array<Integer>, operation: Proc<Integer, Integer>): Array<Integer>
numbers.map { |n| operation.call(n) }
end
doubled = apply_to_all([1, 2, 3], Proc.new { |n| n * 2 })
# doubled: [2, 4, 6]
Lambda Types
Lambdas have the same type signature as Procs:
# Lambdas with type annotations
add_ten: Proc<Integer, Integer> = ->(n: Integer) { n + 10 }
multiply: Proc<[Integer, Integer], Integer> = ->(a: Integer, b: Integer) { a * b }
format_user: Proc<User, String> = ->(user: User) { "#{user.name} (#{user.email})" }
# Using lambdas
sum = add_ten.call(5) # 15
product = multiply.call(3, 4) # 12
formatted = format_user.call(user) # "Alice (alice@example.com)"
# Lambdas can be passed to methods
def filter_users(users: Array<User>, predicate: Proc<User, Boolean>): Array<User>
users.select { |user| predicate.call(user) }
end
is_admin: Proc<User, Boolean> = ->(user: User) { user.role == "admin" }
admins = filter_users(all_users, is_admin)
Higher-Order Functions
Functions that return procs or lambdas:
def create_multiplier(factor: Integer): Proc<Integer, Integer>
->(n: Integer) { n * factor }
end
def create_formatter(prefix: String): Proc<String, String>
->(text: String) { "#{prefix}: #{text}" }
end
def create_validator(min_length: Integer): Proc<String, Boolean>
->(text: String) { text.length >= min_length }
end
# Using higher-order functions
times_three = create_multiplier(3)
times_three.call(4) # 12
error_formatter = create_formatter("ERROR")
error_formatter.call("File not found") # "ERROR: File not found"
password_validator = create_validator(8)
password_validator.call("secret") # false
password_validator.call("secret123") # true
Blocks with No Parameters
Some blocks don't take parameters:
def execute(&block: Proc<[], void>): void
puts "Before execution"
block.call
puts "After execution"
end
def run_if_true(condition: Boolean, &block: Proc<[], String>): String?
if condition
block.call
else
nil
end
end
# Using blocks with no parameters
execute do
puts "Executing task"
end
result = run_if_true(true) do
"Task completed"
end
Use Proc<[], ReturnType> for blocks that take no parameters.
Generic Blocks
Blocks can be generic to preserve type information:
def map<T, U>(array: Array<T>, &block: Proc<T, U>): Array<U>
array.map { |item| block.call(item) }
end
def filter<T>(array: Array<T>, &block: Proc<T, Boolean>): Array<T>
array.select { |item| block.call(item) }
end
def reduce<T, U>(array: Array<T>, initial: U, &block: Proc<[U, T], U>): U
array.reduce(initial) { |acc, item| block.call(acc, item) }
end
# Type is preserved through generic blocks
numbers = [1, 2, 3, 4, 5]
strings = map(numbers) { |n| n.to_s } # Array<String>
evens = filter(numbers) { |n| n.even? } # Array<Integer>
sum = reduce(numbers, 0) { |acc, n| acc + n } # Integer
Practical Example: Event Handlers
A real-world example using blocks for event handling:
class EventEmitter<T>
def initialize()
@listeners: Array<Proc<T, void>> = []
end
def on(&listener: Proc<T, void>): void
@listeners.push(listener)
end
def emit(event: T): void
@listeners.each { |listener| listener.call(event) }
end
def remove(&listener: Proc<T, void>): void
@listeners.delete(listener)
end
end
# Using the event emitter
class UserEvent
attr_accessor :type: String
attr_accessor :user: User
def initialize(type: String, user: User)
@type = type
@user = user
end
end
user_events = EventEmitter<UserEvent>.new
# Register event handlers
user_events.on do |event|
puts "User event: #{event.type} for #{event.user.name}"
end
user_events.on do |event|
if event.type == "login"
log_login(event.user)
end
end
# Emit events
user_events.emit(UserEvent.new("login", current_user))
user_events.emit(UserEvent.new("logout", current_user))
Practical Example: Middleware Pattern
Using procs for middleware chains:
class Request
attr_accessor :path: String
attr_accessor :params: Hash<String, String>
def initialize(path: String, params: Hash<String, String>)
@path = path
@params = params
end
end
class Response
attr_accessor :status: Integer
attr_accessor :body: String
def initialize(status: Integer, body: String)
@status = status
@body = body
end
end
type Middleware = Proc<[Request, Proc<Request, Response>], Response>
class MiddlewareStack
def initialize()
@middlewares: Array<Middleware> = []
end
def use(middleware: Middleware): void
@middlewares.push(middleware)
end
def execute(request: Request, handler: Proc<Request, Response>): Response
chain = @middlewares.reverse.reduce(handler) do |next_handler, middleware|
->(req: Request) { middleware.call(req, next_handler) }
end
chain.call(request)
end
end
# Define middleware
logging_middleware: Middleware = ->(req: Request, next_handler: Proc<Request, Response>) {
puts "Request: #{req.path}"
response = next_handler.call(req)
puts "Response: #{response.status}"
response
}
auth_middleware: Middleware = ->(req: Request, next_handler: Proc<Request, Response>) {
if req.params["token"]
next_handler.call(req)
else
Response.new(401, "Unauthorized")
end
}
# Use middleware stack
stack = MiddlewareStack.new
stack.use(logging_middleware)
stack.use(auth_middleware)
handler: Proc<Request, Response> = ->(req: Request) {
Response.new(200, "Hello, World!")
}
request = Request.new("/api/users", { "token" => "abc123" })
response = stack.execute(request, handler)
Practical Example: Functional Operations
Building a functional utility library:
module Functional
def self.compose<A, B, C>(
f: Proc<B, C>,
g: Proc<A, B>
): Proc<A, C>
->(x: A) { f.call(g.call(x)) }
end
def self.curry<A, B, C>(
f: Proc<[A, B], C>
): Proc<A, Proc<B, C>>
->(a: A) { ->(b: B) { f.call(a, b) } }
end
def self.memoize<T, U>(f: Proc<T, U>): Proc<T, U>
cache: Hash<T, U> = {}
->(arg: T) {
if cache.key?(arg)
cache[arg]
else
result = f.call(arg)
cache[arg] = result
result
end
}
end
end
# Using functional operations
add_one: Proc<Integer, Integer> = ->(n: Integer) { n + 1 }
multiply_two: Proc<Integer, Integer> = ->(n: Integer) { n * 2 }
# Compose functions
add_then_multiply = Functional.compose(multiply_two, add_one)
add_then_multiply.call(5) # (5 + 1) * 2 = 12
# Curry functions
multiply: Proc<[Integer, Integer], Integer> = ->(a: Integer, b: Integer) { a * b }
curried_multiply = Functional.curry(multiply)
times_three = curried_multiply.call(3)
times_three.call(4) # 12
# Memoize expensive operations
expensive: Proc<Integer, Integer> = ->(n: Integer) {
puts "Computing..."
n * n
}
memoized = Functional.memoize(expensive)
memoized.call(5) # Prints "Computing..." and returns 25
memoized.call(5) # Returns 25 immediately (cached)
Block Return Types
Be specific about what blocks return:
# Block returns a value
def sum_transformed(numbers: Array<Integer>, &block: Proc<Integer, Integer>): Integer
numbers.map { |n| block.call(n) }.sum
end
# Block returns nothing (void)
def each_with_index(&block: Proc<[String, Integer], void>): void
["a", "b", "c"].each_with_index do |item, index|
block.call(item, index)
end
end
# Block returns a boolean (for filtering)
def custom_select(items: Array<String>, &predicate: Proc<String, Boolean>): Array<String>
items.select { |item| predicate.call(item) }
end
# Using different return types
total = sum_transformed([1, 2, 3]) { |n| n * n } # 1 + 4 + 9 = 14
each_with_index { |item, idx| puts "#{idx}: #{item}" }
long_strings = custom_select(["hi", "hello", "hey"]) { |s| s.length > 2 }
# long_strings: ["hello"]
Best Practices
-
Be explicit with block types: Always annotate block parameters with their expected types.
-
Use lambdas for strict argument checking: Lambdas enforce argument counts, Procs are more forgiving.
-
Prefer generic blocks for reusability: Generic blocks work with any type while maintaining type safety.
-
Use Proc types for stored blocks: When storing blocks in variables or instance variables, use Proc types.
-
Document complex block signatures: If a block takes many parameters or has complex types, add comments.
-
Use void for side-effect blocks: When a block is only used for side effects, mark its return type as void.
Common Patterns
Callback Pattern
def fetch_data(url: String, on_success: Proc<String, void>, on_error: Proc<String, void>): void
begin
data = HTTP.get(url)
on_success.call(data)
rescue => e
on_error.call(e.message)
end
end
fetch_data(
"https://api.example.com/data",
->(data: String) { puts "Success: #{data}" },
->(error: String) { puts "Error: #{error}" }
)
Builder Pattern with Blocks
class QueryBuilder
def initialize()
@conditions: Array<String> = []
end
def where(&block: Proc<QueryBuilder, void>): QueryBuilder
block.call(self)
self
end
def equals(field: String, value: String): void
@conditions.push("#{field} = '#{value}'")
end
def build(): String
"SELECT * FROM users WHERE #{@conditions.join(' AND ')}"
end
end
query = QueryBuilder.new
query.where do |q|
q.equals("name", "Alice")
q.equals("active", "true")
end.build()
Iterator Pattern
def times(n: Integer, &block: Proc<Integer, void>): void
(0...n).each { |i| block.call(i) }
end
def until_true(&block: Proc<Integer, Boolean>): Integer
i = 0
while !block.call(i)
i += 1
end
i
end
times(5) { |i| puts "Iteration #{i}" }
result = until_true { |i| i > 10 } # 11
Summary
Blocks, Procs, and Lambdas in T-Ruby provide powerful abstractions while maintaining type safety:
- Blocks are typed with
&block: Proc<Input, Output> - Multiple parameters use tuple syntax:
Proc<[Type1, Type2], Output> - Optional blocks use
Proc<Input, Output>? - Generic blocks preserve type information through generic parameters
- Higher-order functions can create and return typed procs
With proper type annotations, you get all the flexibility of Ruby's blocks with the safety of static typing.